- Difference of two squares
- a2- b2 = (a + b)(a - b)
- a2-81 2 = (a + 9)( a- 9)
- a2- 42 =( a + 2)(a - 2)
- a2- 362 = ( a + 6)(a-6)
- a2- b2 = (a + b)(a - b)
- Trinomial perfect squares
- a2 + 2ab + b2= (a + b)(a + b) or (a + b)2
- a2 + 6a + 92= (a + 3)(a + 3) or (a + 3)2
- a2 + 14a + 492= (a + 7)(a + 7) or (a + 7)2
- a2 + 18a + 812= (a + 9)(a + 9) or (a + 9)2
- a2 - 2ab + b2 = (a - b)(a - b) or (a - b)2
- a2 - 8ab + 162 = (a - 4)(a - 4) or (a - 4)2
- a2 - 6a + 92 = (a - 3)(a - 3) or (a - 3)2
- a2 - 12a + 362 = (a - 6)(a - 6) or (a - 6)2
- a2 + 2ab + b2= (a + b)(a + b) or (a + b)2
- Difference of two cubes
- a3 - b3
- 3 - cube root 'em
- 2 - square 'em
- 1 - multiply and change
- a3 - 1 = (a-1)(a+a+1)
- a3 - 27 = (a-3)(a-3a+9)
- a3 - 125 =(a-5)(a+5a+25)
- a3 - b3
- Sum of two cubes
- a3 + b3
- 3 - cube root 'em
- 2 - square 'em
- 1 - multiply and change
- a3 + 1 = (a + 1)(a2+a+1)
- a3 + 125 = (a+5)(a2+5a+25)
- a3 + 64 = (a+4)(a2+4a+16)
- a3 + b3
- Binomial expansion
- (a + b)3 = a3 + 3a2b + 3ab2 + b3= (a + 4) 3= a3 + 12a2 + 48a + 64
- (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 =(a + 3) 4 = a4 + 12a3 + 54a2 + 108a + 81
Monday, December 13, 2010
Identifying Special Situations in Factoring
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment